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Reactions in the intracellular medium occur in a highly organized and heterogenous en-
vironment rendering invalid modeling approaches based on the law of mass action or its
stochastic counter-part. This has led to the recent development of a variety of stochastic
microscopic approaches based on lattice-gas automata or Brownian dynamics. The main
disadvantage of these methods is that they are computationally intensive. We propose
a mesoscopic method which permits the efficient simulation of reactions occurring in
the complex geometries typical of intracellular environments. This approach is used to
model the transport of a substrate through a pore in a semi-permeable membrane, in
which its Michaelis–Menten enzyme is embedded. We find that the temporal evolution
of the substrate is a sensitive function of the spatial heterogeneity of the environment.
The spatial organization and heterogeneities of the intracellular medium seem to be
playing an important role in the regulation of biochemical reactions.

KEY WORDS: macromolecular crowding, modeling intracellular reactions, biological
processes in organized media, mesoscopic simulation

1. INTRODUCTION

Biochemical reactions are the basis of cellular functions. They occur in an in-
tracellular environment which abounds with organelles and macromolecules.
The high macromolecular content of the cytoplasm, known as macromolecular
crowding,(23,25,31) implies that between 5% and 40% of the total intracellular vol-
ume is physically occupied by these molecules. This is much larger than the density
typically found in vitro conditions.(67) Also it is known that many of the proteins
and transmembrane receptors which carry and process messages inside a living
cell are associated with compact clusters of molecules attached to cell membranes
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or the cytoskeleton. (7) The small scale compartmentalization induced by both
crowding and internal cellular architecture imply that the in vivo environment,
unlike the in vitro one, is highly heterogeneous.

In recent years computational modeling has become a tool to investigate var-
ious phenomena in the natural sciences. Traditionally the modeling of chemical
reactions has been achieved either by means of differential equations based on
the law of mass action or through the use of its stochastic counter-part. (72) Unfor-
tunately, these two approaches have been demonstrated both theoretically (37,38,72)

and experimentally (47,48) to be invalid for describing reactions occurring in het-
erogenous environments, particularly in dimensionally-restricted conditions.

Notwithstanding the vast evidence to the contrary, the majority of intracel-
lular modeling studies assume that the classical law of mass action is valid (for
recent examples see Refs. 11, 27, 52, 64). This obviously simplifies the prob-
lem but nevertheless is physico-chemically incorrect. In the past few years two
approaches have been developed to counteract this problem, namely that of real-
istically simulating and investigating reactions occurring in a spatially extended
heterogeneous environment: (i) the Lattice-Gas (LG) or Monte Carlo method(6,67)

and (ii) Smoldyn, a Brownian dynamics simulator. (2)

Lattice-gas automata were originally devised as a method for the simulation
of fluid flows. (22,26,32) They have since proved to provide a simple, phenomenolog-
ical and easily implementable method of investigating the macroscopic dynamics
of chemical reaction kinetics. This is achieved by averaging over noisy data ob-
tained from the stochastic simulation of a large number of point molecules moving
and interacting on a spatial lattice according to a well defined set of rules. LG
simulations have a long history of being applied to reactions occurring in homo-
geneous media.(34−36,73)It is however only recently that they have been applied
to study the kinetics of biochemical reactions in an in vivo biological setting. A
few examples of such studies are: signaling in T Lymphoctes, (18) signal transduc-
tion in E. coli chemotaxis (43) and enzyme and bimolecular reactions occurring on
two dimensional membranes. (29,67) LG simulations provide a simple but powerful
framework for building models of intracellular transport and signaling, though to
date this has only been used in a few instances. The main problem with this type
of modeling is that we are usually not interested in the reaction kinetics on the
scale of a single molecule or of a few molecules but rather on the scale of a typical
organelle. To obtain such information from LG simulations, a substantial amount
of noise averaging is needed, leading to long simulation times. This problem is
fundamentally similar to that of coarse graining in LG simulations of fluid flow in
complex geometries. (26)

The advantage of the Brownian dynamics simulator, Smoldyn, over LG is
that it does not have an artificial spatial lattice, thus eliminating possible lattice
effects. (29) It however shares the same disadvantage of LG, namely that it provides
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Table I. Typical spatial scales inside a

cell (10)

Size range

Animal cells 10 µm–100 µm
Nucleus ∼5 µm
Mitochondrion ∼2 µm
Ribosomes ∼30 nm
Proteins 4 nm–10 nm
Small molecules 0.5 nm–1 nm

single molecule detail. An added disadvantage is that molecular crowding and
organelles have to be simulated via three dimensional shapes constructed by
patching together several flat surfaces. This enhances the difficulty of simulating
reaction kinetics in realistic intracellular geometries.

Our aim in this article is to develop a modeling environment which enables
the buildup of a reasonably realistic picture of intracellular signaling in large parts
of the cell, with a resolution of say 1/100th of the size of a typical cell. Current
microscopic methods are impractical; coarse graining of the reaction dynamics
means that simulations take a very long time, putting a dire limit on what is real-
istically possible to investigate. (62,65,72) In Sec. 2 we develop a lattice mesoscopic
(LM) technique which surmounts the problems of the current approaches. This
approach is put to the test in Sec. 3 and we conclude with a discussion in Sec. 4.

2. A MESOSCOPIC MODEL

The most important feature of our novel approach is that it should describe
the reactive kinetics on a mesoscopic scale, in a manner which is consistent with
the relevant physics and chemistry at this scale. We arbitrarily choose this scale
to be much larger than that of individual molecules but smaller than that of an
organelle. Such a scale separation is indeed possible since as shown in Table I the
size of a typical organelle is about three orders of magnitude larger than that of
small molecules.

We start by overlaying a square grid over the portion of intracellular space of
interest. For simplicity, we will model reactions in a two dimensional environment
though the extension to three dimensions is straightforward. Let the grid resolution
be �x ; the N elements of the grid are each identified by an integer number j . Each
element of the grid has associated with it two types of number densities: [ρi

R] j

and [ρU ] j , where [ρi
R] j is the number density of the i th reactive chemical species

in element j and [ρU ] j is the number density of unreactive microscopic objects
in element j . Unreactive objects can, for example, represent inert cytoplasmic
macromolecular agents or microscopic portions of intracellular structures such as
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organelles. We shall assume that reactive molecules are mobile whereas unreactive
objects are static. This assumption can be easily relaxed though generally speaking
macromolecules and organelles are relatively static compared to the more mobile
reactant molecules. The total density in element j is the sum of the number
densities of all reactive and unreactive objects in the element and is denoted by
[ρT ] j . Inside each element of the grid, two physical processes are modeled: (i) the
diffusive influx and outflux from the four neighboring elements, (ii) the interaction
of reactive molecular species inside the element. We shall assume that these two
processes can be decoupled from each other. Then the diffusive dynamics can be
described by a master equation with some transition rates Wk→ j and the reactive
dynamics can be described by some function F of the molecular number densities:

∂t

[
ρi

R

]
j
=

∑

k

[
Wk→ j

[
ρi

R

]
k
− W j→k

[
ρi

R

]
j

] + F
([

ρi
R

]
j
,
[
ρm

R

]
j

)
, (1)

where the sum over k is a sum over the four nearest element neighbors of element
j and m denotes all reactive species which through interaction with other species
either produce or destroy species i . Of course, if we ignore the inter-molecular and
hydrodynamic forces between all chemical species and the physical confinement
due to the cell’s internal architecture, then the reactions occur in a well-mixed
environment; in such a case the above equation would be reduced to a conventional
reaction-diffusion type of equation with transition rates Wk→ j = D/�x2 (the
constant D is a diffusion coefficient for the molecules) and reaction terms directly
proportional to the product of reactant concentrations (follows from the law of
mass action).

However, as previously mentioned intracellular environments are replete with
unreactive objects, ranging in size from microscopic macromolecular agents to
large organelles such as mitochondria. Hence it is clear that the diffusion of reactant
molecules of say type i , from one element a to a neighboring one b, cannot be
pure diffusion. Rather in computing the diffusive flux, one has to take into account
the number densities of both reactive and unreactive species in elements a and b.
We could model this in a phenomenological manner by defining heuristic rules
which qualitatively reproduce density-dependent diffusion. Unfortunately, this
approach would produce a model defined in terms of parameters which are not
experimentally measurable, thus limiting the quantitative predictions of the model.
Instead we choose to derive the physically correct diffusive reaction kinetics by
coarse-graining the relevant microscopic Langevin equations, thereby obtaining
the correct form of the transition rate Wk→ j . This is left for Sec. 2.1. The reaction of
the various molecular species inside an element is also affected by the population
of unreactive objects inside the element meaning that we need a new functional
form for the reactive terms F . This is treated in Sec. 2.2.
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2.1. Derivation of the Diffusive Influx/Outflux Equations

Let us derive the physically correct form of the diffusive currents between
neighboring elements of the grid. For the moment we ignore the elements of the
grid. We only consider reactive and unreactive molecules in continuous space.
Consider the interaction of NA molecules of type A, NB molecules of type B and
NO molecules of type O . A and B are reactive species while O is an unreactive
species. The motion of a single molecule of type A is determined by an equation
of motion of the Langevin type:

ẋA,n(t) = ξA,n(t) +
NA∑

m=1,m �=n

∇V (xA,n − xA,m) +
NB∑

m=1

∇V (xA,n − xB,m)

+
NO∑

m=1

∇V (xA,n − xO,m), (2)

where xA,n is the center of mass of the nth molecule of type A. The stochastic
variable ξA,n is white noise defined by 〈ξA,n(t)〉 = 0 and the correlation function
〈ξA,n(t)ξA,m(t ′)〉 = 2Dδn,mδ(t − t ′), where D is the diffusion coefficient of the
molecules. The angular brackets 〈〉 denote the ensemble average. The intermolec-
ular interaction is mediated by the potential function V . Thus the above equation
describes the diffusion and intermolecular interaction of molecules of type A with
all other molecules. Note that it does not describe the reaction kinetics since this
is taken care of separately in the next section.

The correlation function above implies that we are assuming that molecular
movement in the absence of intermolecular forces mediated by the potential V , can
be well described by a Wiener process, which is a model of Brownian motion. (24)

This model is an idealized one and thus the simplest; the Ornstein-Uhlenbeck pro-
cess is a more realistic model of Brownian motion but we do not treat it further in
this article. By assuming Brownian motion, we are implicitly assuming that the re-
actant molecules of interest are much larger than the background fluid molecules,
whose thermal motion is responsible for the reactant molecules’ haphazard Brow-
nian movement. The fluid molecules are not modeled in our approach. The effect
that they have on the reactant molecules’ motion is purely through the diffusion
coefficient D.

We emphasize that D is the diffusion coefficient of isolated reactive or unre-
active molecules i.e. in the absence of any interaction (through a force field) with
other similar molecules. Note that our formulation implicitly ignores hydrody-
namic interactions (see the Discussion section for more on this). Thus although it
is clear that the effective diffusion coefficient of reactive or unreactive molecules
has to be a function of the spatio-temporal configuration of other molecules, this
fact cannot be introduced a priori through D. Rather it has to naturally come out
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when we take into account the intermolecular forces between molecules. We shall
calculate the effective diffusion coefficient later in this section.

Since our proposed model is at a mesoscopic scale we are interested in
number densities not individual molecules. To this end we now derive an equation
of motion for the molecule probability density function using Eq. (2). Let PA,n(x, t)
be the probability that the nth molecule of type A is at position x at time t . Then
it can be shown(50) that Eq. (2) is exactly equivalent to the following equation of
motion for the molecular probability density function:

∂t PA,n(x, t)= D∇2 PA,n(x, t)+∇ ·
∫

dd x ′ [∇V (|x − x′|)]
∑

m �=n

PA,n|A,m(x, t ; x′, t)

+ ∇ ·
∫

dd x ′ [∇V (|x − x′|)]
∑

m

PA,n|B,m(x, t ; x′, t)

+ ∇ ·
∫

dd x ′ [∇V (|x − x′|)]
∑

m

PA,n|O,m(x, t ; x′, t), (3)

where PA,n|O,m(x, t ; x′, t) is the probability that at time t , the nth molecule of
type A is at position x while the mth molecule of type O is at position x′. We
refer to this as the two molecule joint probability density function. Note that an
implicit assumption used in deriving this equation is that the diffusion coefficient
of all reactant molecules of type A is exactly the same. We also assumed that all
molecules interact through the same type of potential. This restrictive assumption
is not generally required to derive the above equation, the only requirement being
that molecules of one type interact with molecules of another type through the
same potential. For example it is possible that molecules of type A react with
each other through a potential V and with molecules of type B and O through
a different potential V0. In such a case the potential V in the third and fourth
terms on the right hand side of Eq. (3) would be replaced by V0. For the sake of
simplicity, throughout the rest of our treatment we will assume that all molecules
interact through the same potential V .

Having obtained an equation of motion for the single molecule probability
density function, we now want to use this to derive an equation for the temporal
evolution of the number density. Let R denote a general molecule of any type.
Applying the mean field approximation PA,n|R,m = PA,n PR,m (ignoring statistical
correlations between molecules) to Eq. (3) and summing the resulting equation
over the index n we find an equation for the number density of molecules of type
A, ρA(x, t):

∂tρA = D∇2ρA + ∇ · ρA∇
∫

dd x ′ [V (|x − x′|)ρ(x′, t)
]
, (4)
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where ρ(x, t) = ρA(x, t) + ρB(x, t) + ρO (x, t) i.e. ρ is the total number of
molecules of any kind at position x at time t . In a similar manner one can derive
equations for molecules of species B. The validity and implications of using the
mean-field approximation is discussed at the end of this subsection.

Eq. (4) is continuous in space and time. By discretizing it we obtain the
relevant dynamics in our lattice mesoscopic model. This discretization can be
performed in many ways; we choose the MED representation(28) which guarantees
that the discretized equation has the form of a Master equation. (24,63) Let the
velocity potential function be defined as:

φ(x, t) =
∫

dd x ′V (|x − x′|)ρ(x′, t). (5)

Then the MED discretized form of Eq. (4) is:

∂t

[
ρ1

R

]
j
=

∑

k

[
Wk→ j

[
ρ1

R

]
k
− W j→k

[
ρ1

R

]
j

]
, (6)

where [ρ1
R] j is the number density of molecules of species A in element j . Note

that the notation [ρi
R] j was introduced in the previous section; here we have

chosen i = 1 to denote species A. The sum is over the nearest element neighbors
of element j . W j→k is the transition rate for molecules of type A to move from
element j to element k. This is given by:

Wk→ j = D

�x2
e−(� j −�k )/2D, (7)

where �x is the lattice spacing of our mesoscopic approach and � j is the dis-
cretized form of the velocity potential:

� j =
∑

k ′
V (|( j − k ′)�x |)[ρT ]k ′ . (8)

In this expression, the sum over k ′ is a sum of all the grid elements covering
the intracellular space of interest. The potential function V is sampled by the
discretized velocity potential at integer multiples of the grid size �x . This means
that details of the potential function over distances smaller than the grid size are
irrelevant. Since our model by design is mesoscopic, the grid size is much larger
than that of individual molecules implying that any discretized intermolecular
potential function can be well approximated by a delta-function V (|x − x′|) =
U0δ(x − x′). Thus the discretized velocity potential function reduces to the simple
form:

� j = U0 [ρT ] j , (9)

where U0 is a constant measuring the strength of repulsion between molecules.
Hence the transition rate for molecules to move between two neighboring grid
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elements, j and k, is given by:

W j→k = D

�x2
e−U0([ρT ]k−[ρT ] j )/2D. (10)

This completely specifies the diffusive dynamics part of the general mesoscopic
equation Eq. (1). We note that the physical meaning of this transition rate is that
on a coarse enough spatial scale, the combined effect of diffusion and intermolec-
ular potential-mediated interactions is equivalent to a spatially and directionally-
dependent diffusion.

Now we briefly discuss the assumptions implicit in using the above approach
for modeling the diffusive motion of reactant molecules in a heterogeneous envi-
ronment. The crucial approximation at the heart of our derivation is the mean-field
approximation. One may ask what is the need of such an approximation and what
does it imply about our method’s validity and general applicability. Eq. (3) is an
exact probabilistic description of the Langevin model given by Eq. (2). The single
molecule probability density function PA,n(x, t) can be computed if one knows
the two molecule joint probability density function PA,n|O,m(x, t ; x′, t). One can
also derive equations for the two molecule joint probability density function, thus
finding that it depends on the three molecule joint probability density function.
Hence the corresponding probabilistic description of the Langevin equation con-
sists of a hierarchy of a large number of coupled equations which generally cannot
be solved. One can use these equations together with perturbation theory in mo-
mentum space to derive expressions for averaged quantities, for example the time
dependence of the spatial variance of the molecules, but it is not possible to derive
an effective macroscopic equation in terms of the number density of molecules,
which is our aim. The problem clearly stems from the spatial correlations between
molecules. By ignoring these correlations (applying the mean-field approxima-
tion) one can get an equation for the temporal evolution of the molecular number
density.

Now such an approximation is well-known to be generally valid in higher
dimensions and for large numbers of interacting particles. An environment char-
acterized by a very high spatial heterogeneity is one in which the effective di-
mensionality and the number of interacting molecules is small. The latter follows
from the fact that if there is a large number of static obstacles then mobile re-
actant molecules have a tendency of becoming trapped in small areas of space,
thus isolating them from interaction with the rest of the reactant molecules. Hence
our approach should be fine for low to moderate heterogeneous spatial regions
but will breakdown for highly heterogeneous parts of the intracellular space of
interest. In particular in highly heterogeneous regions, the molecular movement
in reality should be described by anomalous diffusion(51) not Fickian diffusion
thus implying that in these regions our approach will probably over-estimate the
movement of molecules from one grid element to neighboring ones. The validity
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of the mean-field approximation is also dependent on the mobility of intracellular
obstacles; if the obstacles are mobile, then the approximation holds better than for
the case of static obstacles.

2.2. Non-Classical Reaction Kinetics

In the previous section, we have considered the effect of unreactive objects
on the diffusive flux in and out of a given element. The reaction of the various
molecular species inside an element is also affected by the population of unreactive
objects inside the element. This applies only to bimolecular reactions which are
diffusion-limited but does not apply to monomolecular reactions. We shall assume
throughout this section that there are only two reactive species A and B and an
unreactive non-mobile species O . Furthermore we assume that the two reactant
species interact through an elementary bimolecular reaction of the type A + B →
ø. We choose this example for illustrative purposes, however all the results we shall
find apply equally well to more complex reaction mechanisms with any number
of reacting species. The specific aim of this section is to find an appropriate form
for the reaction function F in the general mesoscopic equation Eq. (1).

The simplest mathematical form for the function F describing the reactive
dynamics in element j is given by F = −k[ρ1

R] j [ρ2
R] j . Here k is the reaction

constant characterizing the reaction A + B → ø, [ρ1
R] j is the number density of

species A in element j and [ρ2
R] j is the number density of species B in element j .

This form for F is clearly not suitable for our purposes since it is based on the law
of mass action, which is generally valid for reactions occurring in homogeneous
and high dimensional environments.

In recent years, reaction kinetics in heterogenous conditions has been approx-
imated mostly by two methods, fractal kinetics and the power-law approximation,
both of which are a modification of the law of mass action. In the fractal kinet-
ics approach, (38) the rate constant k is replaced by a rate coefficient k(t) with a
time dependence whose asymptotic form is proportional to t−h , where 0 < h < 1.
Unfortunately this approach is not compatible with a mesoscopic model of in-
tracellular kinetics. This method is only valid for closed systems, whereas each
element of our grid is an open system (molecules can freely enter and leave). A sec-
ond possible approach would be the power-law approximation of Savageau. (66,67)

In this approach the reaction orders are not restricted to the integer values given by
the law of mass action but rather they can take fractional values dependent on the
fracton dimension of the environment. It is valid for both open and closed systems
and thus it is generally compatible with a mesoscopic description. The main prob-
lem in adopting this approach is that it has been proven correct only for elementary
reactions (30) under a restricted set of initial conditions. A second problem is that
the power-law approximation is a phenomenological approach and as such there is
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no clear connection with the relevant physics. Given these limitations we choose
not to employ it.

Instead we opt for a simpler method derived from a first-principles physics
consideration of the reaction kinetics. We first assume that both reactive and
unreactive species are distributed randomly inside the element. Then the encounter
rate of reactive molecules of type A and B has to be proportional to the sum of
their respective self-diffusion coefficients:

encounter rate = k
[
ρ1

R

]
j

[
ρ2

R

]
j
, (11)

k ∝ (D1 + D2), (12)

where k is the rate coefficient. Thus to compute the rate coefficient we need
expressions for the self-diffusion coefficient. The self-diffusion coefficient is the
transport coefficient characterizing the dynamical time evolution of the single
particle density. It depends on the inter-particle forces mediated by a potential and
also on hydrodynamic interactions. Specific analytic forms of the self-diffusion
coefficient are only known for a few inter-particle potential functions, usually in
the limit of small concentration. (9) Thus although the exact form of the inter-
molecular potential will not have much effect on the diffusive currents between
neighboring elements of our grid (as we showed in the previous section), it is a
significant factor in determining the reaction kinetics. Our ensuing discussion of
the appropriate form of the self-diffusion coefficient will be in the context of the
shape of the chemical species under consideration. The reactive chemical species
inside cells can be proteins or other smaller types of molecules, for example
simple sugars. However the inert macromolecules which crowd the cytoplasm are
frequently proteins. There are three general cases which ought to be considered:

(i) both reactive and unreactive molecules are spherical particles,
(ii) reactants are spherical particles while the unreactive molecules have a

non-spherical shape,
(iii) both reactive and unreactive molecules have non-spherical configurations.

Proteins are either globular (spherical) or fibrous (non-spherical) polymers. En-
zymes are frequently globular proteins while fibrous proteins tend to have a struc-
tural, inert function. It is thus unlikely that both reactant and unreactant molecules
are spherical; the chances are that at least one of them is non-spherical. The self-
diffusion coefficient is a function of the geometrical configuration of the interacting
molecules. We shall briefly consider the above three cases.

The case in which both reactive and unreactive particles have spherical con-
figurations is analogous to the self-diffusion of spheres in suspension. This is a
well studied problem, particularly for the case of uncharged spheres whose motion
is coupled via the fluid. (3,4,20) An analysis which takes into account the many-body
hydrodynamics interactions (4) shows that the self-diffusion coefficient for a dilute
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suspension is given by:

D ∝ 1 − 1.73ψ + 0.88ψ2 + O(ψ3), (13)

where ψ is the excluded volume fraction of space. Similar results are known for
charged spheres (with and without hydrodynamic interactions), though in this case
the coefficients in the series expansion above are not constants; rather they are
functions of the parameters characterizing the interaction potential. (9)

Next the case where the reactant is spherical and the unreactive molecules
are not. Assuming hard sphere interactions, the reduction in reactant diffusivity
due to a background inert polymer network has been shown by many studies (see
for example, Refs. 33, 51, 70) to follow a stretched exponential law in the volume
fraction. This law breaks down for high fractions of excluded volume, marked
by the onset of anomalous diffusion. (51) The non-spherical polymer networks
used in these studies consisted of worm-like chains and various porous cage-like
structures.

If both reactive and unreactive molecules do not have spherical configurations
(e.g. polymer chains) then the analysis becomes considerably more complicated.
As recently remarked by Merriam et al. (page 1663, Ref. 46) “the theoretical
elucidation of the nature of polymer dynamics remains a substantial challenge
for theoretical statistical mechanics.” The underlying reason for this difficulty
is that many forces contribute to polymer-polymer interactions, including: (i)
topological restrictions due to chain crossing constraints, (ii) solvent-mediated
hydrodynamics interactions, (iii) excluded volume effects, (iv) interactions leading
to long-lived inter-chain associations. (46) There exist a large number of models
to explain polymer dynamics. These theories can be broadly divided into two
main categories: (i) those that deal with hydrodynamic interactions and which
give little importance to configurational properties of the polymer (1,12,55) (ii) those
which neglect hydrodynamic interactions and instead focus on the geometry and
structural properties of the polymeric systems(53,60,61). A number of hydrodynamic
theories based on scaling(12,40,56) and more recently using renormalization group
analysis (57) show that the diffusion coefficient of a polymer in a background
polymer solution (of the same type or of a different type) is given by the simple
relation:

D ∝ exp (−gcβ), (14)

where c is the polymer concentration and g and β are a scaling pre-factor and
exponent respectively. This stretched exponential law is essentially the same as
the one for hard spherical particles in a medium consisting of non-spherical ones,
which we discussed in the previous paragraph. On the other hand, theories fo-
cusing on the configurational properties of the polymers give different results, in
particular a different dependence of the diffusion coefficient on the polymer con-
centration c. These models are largely based on the work of Edwards (16,17) and de
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Gennes. (13,14) There are at least two distinctive regimes predicted by these models:
(i) dilute solutions, in which the polymer molecules move practically independent
of each other and the diffusion coefficient is a constant (ii) semi-dilute and con-
centrated solutions (polymer melts) in which self-diffusion occurs by a process
called reptation. In the latter process, polymer chains move predominantly parallel
to their own backbones. It is predicted(8,13) that the concentration dependence of
the self-diffusion coefficient in this regime is:

D ∝ c−γ , (15)

where γ ∈ (1.75, 3). Despite these predictions, a systematic re-examination of the
experimental literature on polymer self-diffusion(58,59) finds that the self-diffusion
coefficient of polymers in solution is described by a stretched exponential law
in c over very wide ranges of c. This law is the same as that obtained from
hydrodynamic theories [Eq. (14)]. It leads to the conclusion that probably reptation
is not generally important for polymers in solution. However, it may well be
important for highly concentrated solutions (polymer melts) in which the dynamics
are dominated by polymer-polymer friction. The general consensus to date appears
to be that the diffusion of large molecules in polymer solutions is well described
by the stretched exponential law. (54) However it must be emphasized that “no
one model of diffusion can as yet successfully treat solute diffusion in polymer
solutions over a wide range of solute sizes and polymer concentrations” (page
6031, Ref. 54).

For our model we use the stretched exponential law given by Eq. (14) since
this is the form which fits well many experimental data and which has a strong
theoretical underpinning. Other advantages are: (i) it describes well two of the three
cases of possible geometrical configurations of reactive and unreactive molecules,
and (ii) it is empirically correct over wide ranges of the excluded volume fraction
of space, irrespective of the actual physical mechanisms at work.

The exact physical significance of the constants g and β in the stretched
exponential law differs from one model to another. It is empirically (58) found that
β is about one but g varies over about five orders of magnitude. The constant
g depends on the type of interaction potential and thus on the relative sizes and
shapes of all molecules, both the reacting ones and also those which form the inert
background. We replace the concentration c in Eq. (14) by ψ , the excluded volume
fraction of space, since they are proportional. We also set β = 1. Thus we shall use
the expression D ∝ e−gψ for the self-diffusion coefficient of reactant molecules.
This expression was first suggested to study intracellular crowding by Minton. (47)

Note that for small values of the excluded volume the above expression reduces to
the one describing the self-diffusion coefficient of spheres in suspension Eq. (13).
We use this equation to calculate the rate coefficient of a reactant species in each
element of the mesoscopic grid. Based on previous arguments, the reaction rate
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of a species is proportional to the self-diffusion coefficient. Thus the form of the
reactive function F in element j in the general mesoscopic equation Eq. (1) is
given by:

F = −k12 exp (−gψ j )
[
ρ1

R

]
j

[
ρ2

R

]
j
, (16)

where k12 is the rate constant in the limit of infinite dilution and ψ j is the the
fractional occupancy (excluded volume) in element j of the mesoscopic grid,
which is given by:

ψ j =
∑

i

[
ρi

R

]
j
vi + [

ρU

]
j
vu . (17)

The parameter vi is the volume of a single molecule of reactive species i and vu

is the volume of a single unreactive molecule. The form of F given by Eq. (16) is
specifically for the reaction A + B → ø. Many complex reaction mechanisms can
be decomposed into elementary monomolecular and bimolecular reaction steps.
As previously mentioned the monomolecular steps are not diffusion-limited and
so can be modeled as usual; the bimolecular steps can be modeled via terms of the
form given by Eq. (16).

We conclude this subsection by noting that g is a measure of crowding effects
on the reaction kinetics. Setting g = 0 implies that excluded volume effects due
to crowding are insignificant—this is tantamount to assuming that the law of
mass action holds. In many cases, reactions will involve charged species; in such
cases g is expected to be a function of the details of the long-range interaction
potential. Results for macroions interacting through a Debye-Huckel potential
form(9) suggest that g is proportional to the strength of repulsion (for small
excluded volume fractions) implying a possible similar relationship between g and
U0 (the latter parameter was introduced in the previous section). For the purposes
of this paper, it shall be assumed that the latter two constants are independent,
since we do not enforce a specific type of inter-molecular potential. Note that as
for the case of diffusive dynamics, our method for modeling the reactive dynamics
fails for high obstacle densities, since the onset of anomalous diffusion precludes
the use of a self-diffusion coefficient on which our method is based.

2.3. Summary of Method

Let us now put together the diffusive and reaction kinetics derived in previous
sections to obtain the lattice mesoscopic method. The intracellular space of interest
is subdivided into a certain number of square elements with side �x . This scale is
chosen much larger than that of a single molecule but smaller than that of a typical
organelle. Each element j has associated with it two types of number densities
[ρi

R] j and [ρU ] j , where [ρi
R] j is the number density of the i th reactive chemical

species in element j and [ρU ] j is the number density of unreactive microscopic
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objects in the same element. We assume the unreactive species to be static and the
reactive species to be mobile. The total number density of all species in element
j is given by [ρT ] j = ∑

i [ρ
i
R] j + [ρU ] j .

The mesoscopic equation describing the movement and reaction of the reac-
tive molecular species of type i in element j is then given by:

∂t

[
ρi

R

]
j
=

∑

k

[
Wk→ j

[
ρi

R

]
k
− W j→k

[
ρi

R

]
j

] −
∑

m

kime−gψ j
[
ρi

R

]
j

[
ρm

R

]
j

+
∑

u,v

kuve−gψ j
[
ρu

R

]
j

[
ρv

R

]
j
, (18)

where

ψ j =
∑

i

[
ρi

R

]
j
vi + [ρU ] j vu, (19)

Wk→ j = D

�x2
e−U0([ρT ] j −[ρT ]k )/2D. (20)

In Eq. (18), the sum over k is a sum over the nearest element neighbors of element
j . The sum over m is a sum over all molecular species in element j which react
with species i to form some other product molecule. The sum over u and v is a sum
over all molecular species u and v in element j which react to produce species i .
All reactions are assumed to be bimolecular. Note that monomolecular reactions,
such as the irreversible decay of a species into two other types, are not diffusion-
limited and thus would be modeled by an equation in which the rate coefficient is
a constant (this implies that g = 0). The method’s general use is illustrated in the
next section where we model intracellular enzyme-mediated reactions composed
of both monomolecular and bimolecular reaction steps.

The numerical scheme at the heart of our method, Eq. (18), gives meaningful
results only for values of the time step �t and of the space step �x guaranteeing
numerical stability of the method. A stability analysis can be found in Appendix A.
The temporal derivative on the left hand side of Eq. (18) can be discretized by a
first-order accurate Euler approximation. Let the maximum spatial gradient in the
total number density of molecules in the intracellular space of interest be q and let
kim be the rate constant characteristic of the bimolecular reaction between the i th
and mth reactive species. Then we find that stability is achieved if the time step
�t satisfies the condition:

�t ≤ min

[
1

max kim
,

�x2

2D cosh qU0�x/2D

]
. (21)



A Mesoscopic Simulation Approach for Modeling Intracellular Reactions 153

3. CHEMICAL DIFFUSION THROUGH THE PLASMA MEMBRANE: A

CASE STUDY

The structural organization of the cytoplasm and assembly of proteins into
larger structures may confer advantages. For example, they can promote metabolic
channeling, resistance of hydrolytic enzymes, and the reduction of proteins or
other active molecules for cell functioning. (69) In this section, we model the
transport of a substrate through a pore in a semi-permeable membrane, in which its
Michaelis–Menten enzyme is embedded. A similar set up has been used to study
experimentally the kinetics data of membrane-bounded enzymes and transport
systems. (68) The purpose of simulating this system is to test the LM technique,
particularly the ability to simulate two key processes which are common to all
reactions in intracellular environments. These processes are: (a) the diffusion of
chemicals through media having a certain amount of permeability; (b) the reaction
kinetics in spatial environments characterized by macromolecular crowding and
non-trivial geometry.

We simulate the diffusion of a substrate S through a pore in a portion of
the semi-permeable cellular plasma membrane. The physical setup is illustrated in
Fig. 1. Enzyme is embedded in the membrane (green area) at two different locations
(red areas). The substrate and enzyme molecules react following the Michaelis–
Menten mechanism to yield product molecules P . Our initial condition consists
of a uniform concentration of substrate molecules placed on the left side of the
membrane (grey area). In our simulation, we are interested in understanding the
temporal evolution of the substrate concentration field.

3.1. Implementation

We model our reacting environment as a 100 × 100 square grid with the
origin being located at the lower left corner of the grid. Molecules are initially
distributed as follows:

(i) 10000 molecules of substrate S are randomly placed on nodes of the grid
with position (i, j) such that 1 ≤ i ≤ 40 and 1 ≤ j ≤ 100.

(ii) 500 molecules of enzyme E are randomly placed on nodes of the grid
with position 40 ≤ i ≤ 50 and 30 ≤ j ≤ 40. Another 500 molecules of
enzyme E are randomly placed on nodes of the grid with position 50 ≤
i ≤ 60 and 60 ≤ j ≤ 70.

(iii) 10000 unreactive molecules are randomly placed on nodes of the grid
with position 40 ≤ i ≤ 60 and 1 ≤ j ≤ 40. Another 10000 unreactive
molecules are randomly placed on nodes of the grid with position
40 ≤ i ≤ 60 and 60 ≤ j ≤ 100. These inert molecules represent the mem-
brane.
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Fig. 1. Setup of our model system. The cellular membrane (green area) has enzyme at two different
locations (red areas). Initially the substrate is uniformly concentrated on the left side of the membrane
(grey area). Color online.

The number density of molecules of a certain type at each grid node is
defined as the total number of molecules of that type located at that node. To
be precise, in obtaining the density one needs to scale by the area of each ele-
ment but we ignore this since it does not qualitatively change the results. Note
that the time evolution is completely in terms of the density; unlike simula-
tions with LG and Smoldyn, molecules are not moved individually. Let [ρi

R] j

be the number density of the i th reactive molecular species in element j . In
our case i ∈ 1, 2, 3, 4, where i = 1 is the substrate, i = 2 is the enzyme, i = 3
is the enzyme-substrate complex, and i = 4 is the product. There is only one
unreactive species, the membrane molecules, whose number density in element
j is denoted by [ρU ] j . The total number density of all species in element j is
denoted by [ρT ] j . Then the equations defining the temporal evolution of the re-
active density at an element j , according to the LM model prescription Eq. (18)
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are:

∂t

[
ρ1

R

]
j
=

∑

k

[
Wk→ j

[
ρ1

R

]
k
− W j→k

[
ρ1

R

]
j

] − k12e−gψ j
[
ρ1

R

]
j

[
ρ2

R

]
j

+ k21
[
ρ3

R

]
j
, (22)

∂t

[
ρ2

R

]
j
= −k12e−gψ j

[
ρ1

R

]
j

[
ρ2

R

]
j
+ (k21 + k3)

[
ρ3

R

]
j
, (23)

∂t

[
ρ3

R

]
j
= k12e−gψ j

[
ρ1

R

]
j

[
ρ2

R

]
j
− (k21 + k3)

[
ρ3

R

]
j
, (24)

∂t

[
ρ4

R

]
j
=

∑

k

[
Wk→ j

[
ρ4

R

]
k
− W j→k

[
ρ4

R

]
j

] + k3
[
ρ3

R

]
j
. (25)

The sum over k is the sum over the four nearest neighbors of element j . k12 is
the rate of reaction of substrate and enzyme, k21 is the rate of decay of the complex
into the enzyme and the substrate, and k3 is the rate of decay of the complex
into enzyme and product. Note that only the substrate and product diffuse. The
rest are immobile. Please also note that only the diffusion-limited steps of the
reaction have an exponential factor multiplied by the rate constant. Note that there
are no equations for the unreactive molecule number density since this does not
evolve in time. In our simulations �x = 10−1 and �t = 10−3. The values of the
rate constants are: k12 = 10, k21 = 0.1 and k3 = 5. The diffusion coefficient D
is set to unity and the molecular repulsion constant U0 = 0.1. For simplicity the
molecular volume of all species, reactive and unreactive, is chosen to be equal;
as can be verified from the definition of the fractional occupancy Eq. (17), this
implies ψ j ∝ [ρT ] j in our model equations. The boundary conditions are fixed:
the value of all molecular number densities is zero on the boundary at all times.

One may ask if the chosen parameters are appropriate for the biological case
modeled. Because of the large variety of chemicals which diffuse through the
membrane and of the even larger number of possible enzyme-mediated reactions,
there are no typical rate constants and diffusion coefficients that we may use. Our
rate constants are chosen so that the enzyme reaction proceeds very quickly in the
forward direction; this ensures quick production of the product which is typical of
many biochemical reactions. (21)

3.2. Results

The temporal evolution of the density field for the substrate species is com-
puted after 5000 time steps and after 50000 time steps (note that the substrate
concentration field in the latter case does not represent the steady state of the
system). This is computed for two cases: (i) g = 0, that is, assuming that crowding
effects are unimportant (Fig. 2) (ii) g = 1 which implies the contrary (Fig. 3). Note
that the evolution of the density field is markedly different for the two cases. There
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Fig. 2. Contour plot of the number density of the substrate field for g = 0 at (a) t = 5 ×103 time steps
(b) t = 5 ×104 time steps. The relative magnitude of the number density in a region is indicated by
the color of the region, ranging from blue for low densities to red for the highest densities. Note that
the same color in (a) and (b) does NOT mean that the magnitude of the concentration is the same in
both regions of the two separate figures. The color gradient for each individual figure is calculated
according to the maximum and minimum density in that particular figure. Color online.
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Fig. 3. Contour plot of the number density of the substrate field for g = 1 at (a) t = 5 ×103 time steps
(b) t = 5 ×104 time steps. The color gradient is calculated as for Fig. 2. Color online.
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are three notable differences between low and high crowding effects which are
evident at sufficiently long times: (i) the direction of substrate transport through
the pore (ii) the absolute magnitude of the substrate density maximum (iii) the
location of the substrate density maximum.

When crowding is negligible, g = 0, there is a high rate of enzyme-catalyzed
reactions in spatial regions close to those parts of the membrane which contain
the localized enzyme. This explains the asymmetry of the density at the entrance
of the pore at t = 5000 time steps and the low density in the middle of the pore at
t = 50000 time steps. When crowding is significant, g = 1, the rate of enzyme-
catalyzed reactions near the enzyme embedded regions is significantly reduced
when compared to that for g = 0. Thus there is no asymmetry in the density
field at early or later times. The direction of substrate transport and its spatial
distribution are directly related to the symmetry/asymmetry considerations just
discussed.

The second difference is directly related to the rate of reaction: g = 0 implies
a higher rate of reaction and thus smaller values of the maximum number density
than for the case g = 1.

The third requires some explanation. For g = 0, the high rate of reaction
at the center of the pore causes a larger concentration gradient than for the case
g = 1. Thus the substrate diffuses quicker through the pore for the case g = 0
than for the other case. This time lag between the two cases is clearly shown by
plotting the substrate number density at the center of the pore, as a function of
time (Fig. 4).

Note that in practice, both values of g may be applicable in different parts
of the cell. The magnitude of g depends on the relative sizes and shapes of the
reactant species and the inert space-filling species, (47) and in particular on the
interaction potential. If U0 is assumed to be proportional to g (as we hypothesized
in Sec. 2.2) then the same qualitative results as above are obtained. However in
this case, the differences between low and highly crowded conditions are further
exacerbated – this is since the substrate diffusive flux into the enzyme embedded
regions is inversely proportional to U0 (see Eq. (10)).

Our simulations clearly show that crowding considerations are an important
(though very often neglected) determining factor in the time evolution of intra-
cellular biochemical reactions. We have also illustrated the power of our novel
modeling approach: we simulated a complex reacting system with diffusion of
chemicals through semi-permeable membranes and reaction kinetics in complex
geometries.

4. DISCUSSION

In this article we have introduced a new modeling framework for investi-
gating the effect of macromolecular crowding and cellular architecture on the
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Fig. 4. Plot of the substrate density [S] in the center of the membrane pore as a function of time (t is
the number of time steps) for g = 0 (diamond points) and g = 1 (cross points).

temporal evolution of intracellular biochemical reactions. The main advantages
of the LM technique over current techniques is that it models the mesoscopic
reaction kinetics rather than the microscopic reaction kinetics. It also enables to
potentially build realistic models of a whole cell with a resolution of the order of
a typical organelle. Indeed the advantages of the LM technique over the current
microscopic approaches are analogous to those of the Lattice Boltzmann method
over the lattice-gas automata models of fluid flow. (26)

We note that our approach is based on an over-damped form of a multi-
particle Langevin equation Eq. (2) for the reactant and obstacle molecules. Of
course this is only approximative; a physically more realistic treatment would re-
quire starting from the Hamiltonian equations of motion. (15,41,45) The conditions
under which such equations reduce to a set of coupled over-damped Langevin
equations and the conditions under which the Stokes law formula can be used
for the friction (as we have implicitly used) have been extensively discussed by
Oppenheim and collaborators. (15,45,71) The form of the Langevin equation which
we used as our starting point can only be justified, if the hydrodynamic forces
between the Brownian particles are insignificant compared to those due to inter-
molecular potentials over the relevant temporal and spatial scales. A more general
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formulation including hydrodynamic interactions requires that the diffusion co-
efficient D in our Langevin equations is not a scalar constant (as we have as-
sumed) but rather a tensor whose components are a function of the inter-particle
distances. (19,49) The specific forms of this tensor depend on the shapes of the
particles and the hydrodynamical boundary conditions at their surfaces, informa-
tion which is generally not available. (49) The conditions in which hydrodynamical
interactions may be relevant to macromolecular crowding have been discussed by
Bernado et al. (5)

One of the most important discoveries from the past decade of cell signalling
research is that the physical location of proteins plays a central role in intracellular
reaction kinetics. (7,39) In recent years, it has also become clear that macromolecular
crowding and diffusion impose biophysical constraints (44) which influence the
evolution of cell signaling pathways. In agreement with these observations, we
show that the structural organization of the reaction medium is important in enzyme
catalysis (see, Figs. 2–3).

To date, both experiment and theory show that crowded conditions inside cells
strongly favor associations between macromolecules, often increasing the binding
affinity of molecules. (48) Interestingly, we find two new effects of the macromolec-
ular crowding on the reaction kinetics. The presence of crowding agents affects the
direction and rate of substrate transport through a pore in the plasma membrane.
At the same time, crowding increases the substrate concentration, and therefore
its availability in the reacting systems. We note that our simulations are based on a
stretched exponential form for the rate coefficient of reactant molecules inside the
cells. This description is fine when one or more of the interacting molecules has
a non-spherical configuration but may overestimate crowding when both reactant
and inert molecules are spherical. This may occur, for example, if both types of
molecules are globular proteins. Thus in specific regions of the cell where such
conditions may occur, it may be difficult to observe some of the predictions we
have made.

Our simulations show that biophysical constraints resulting from cellular
organization and macromolecular crowding affect the diffusive transport of sub-
strates. It is likely that the intracellular spatial organization and biophysical con-
straints of macromolecular crowding have played a role in the evolution of cell
signaling pathways.

APPENDIX A: STABILITY ANALYSIS

In this section we perform a stability analysis of the explicit numerical scheme
at the heart of our mesoscopic approach. The aim is to find a suitable time step
for efficiently and accurately simulating an intracellular scenario of interest. The
numerical scheme has a reactive part and a diffusive-advective part.
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The reactive dynamics are characterized by timescales τim = 1/kim , where
kim is the rate constant for the bimolecular reaction between the i th and mth
reactive species. Thus the time step has to be chosen much smaller than the
smallest timescale, which is that given by the largest rate constant:

�t = min τim = 1/max kim . (26)

The time step required to guarantee the stability of the diffusive-advective
part of the numerical scheme can be determined by a conventional Von Neumann
analysis. (42) The diffusive-advective dynamics of reactive species A in element j
are described by the equation:

∂t

[
ρi

R

]
j
= D

�x2

∑

k

e−U0([ρT ] j −[ρT ]k )/2D
[
ρi

R

]
k
− e−U0([ρT ]k−[ρT ] j )/2D

[
ρi

R

]
j
. (27)

We shall consider the one dimensional form of the equation; later we will generalize
the analysis to higher dimensions. Then Eq. (27) can be written as:

[
ρi

R

]
j
(t + �t) = [

ρi
R

]
j
(t) + D�t

�x2

(
e−U0([ρT ] j −[ρT ] j+1)/2D

[
ρi

R

]
j+1

(t)

+ e−U0([ρT ] j−[ρT ] j−1)/2D
[
ρi

R

]
j−1

(t)−e−U0([ρT ] j+1−[ρT ] j )/2D
[
ρi

R

]
j
(t)

− e−U0([ρT ] j−1−[ρT ] j )/2D
[
ρi

R

]
j
(t)

)
, (28)

where we discretized the temporal derivative by an Euler forward approximation,
which is first-order accurate in time. Now we proceed with the stability analysis.
The principle behind it is that the amplitude of any Fourier mode of the system
must decay with time. Note that for a purely advective system the amplitude would
have to stay constant but generally diffusion is also present and thus the amplitude
must decay with time. Consider the time evolution of a single Fourier mode of
wave-number k:

[ρi
R] j (t) = A(t) exp(ik j�x). (29)

Note that the i inside the exponent does not refer to the i th reactive species but is
the square root of −1. Substituting the above equation in Eq. (28) and simplifying,
we obtain:

θ = A(t + �t)

A(t)
= 1 − αD�t

�x2
(1 − cos k�x) − i

αβD�t

�x2
sin k�x, (30)

where

α = e−U0([ρT ] j −[ρT ] j+1)/2D + e−U0([ρT ] j −[ρT ] j−1)/2D, (31)
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β = e−U0([ρT ] j −[ρT ] j−1)/2D − e−U0([ρT ] j −[ρT ] j+1)/2D

e−U0([ρT ] j −[ρT ] j+1)/2D + e−U0([ρT ] j −[ρT ] j−1)/2D
. (32)

For stability, the amplitude must decrease with time; thus we require that the
modulus of θ must be less than unity. It can be shown that this condition is met if:

αD�t

�x2
≤ 1, (33)

β ≤ 1. (34)

The second condition is always fulfilled, by definition of β above. Hence only the
first condition needs to be met to guarantee stability. The minimum value of the
time step �t is determined by the maximum value of α, which can be estimated in
the following manner. Let the maximum spatial gradient in the total number density
of molecules in the intracellular space of interest be q. Furthermore assume that the
grid is fine enough so that this gradient is present over at least two elements of our
grid i.e [ρT ] j+1 − [ρT ] j = [ρT ] j − [ρT ] j−1 = q�x . Then the stability condition
can be written as:

�t ≤ �x2

2D cosh qU0�x/2D
. (35)

Hence to ensure stability and accuracy for both the reactive and the diffusion-
advective parts of the numerical scheme at the heart of our mesoscopic method,
the time step must be chosen to satisfy the two constraints: Eq. (26) and Eq. (35).
Our derivation for the second constraint was in one dimension; the more general
result in arbitrary number of dimensions, gives the same equation with a small
modification: the right hand side is divided by the dimensionality.
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